С. М. Бирук

WH? ТРАЕКТОРИИ КЛАССА КВАДРАТИЧНЫХ СИСТЕМ С ДВУКРАТНЫМ ЛИНЕЙНЫМ ЧАСТНЫМ ИНТЕГРАЛОМ НА СФЕРАХ ПУАНКАРЕ И БЕНДИКСОНА

[1] всякая квадратичная Введение. Согласно автономная полиномиальная дифференциальная система второго порядка с линейным невырожденным интегралом некоторым линейным частным преобразованием может быть приведена к системе одного из видов:

$$\frac{dx}{dt} = x^{2}, \qquad \frac{dy}{dt} = \sum_{i+j=0}^{2} b_{ij} x^{i} y^{j}; \qquad (1)$$

$$\frac{dx}{dt} = xy, \qquad \frac{dy}{dt} = \sum_{i+j=0}^{2} b_{ij} x^{i} y^{j}; \qquad \frac{dx}{dt} = x + ax^{2}, \qquad \frac{dy}{dt} = \sum_{i+j=0}^{2} b_{ij} x^{i} y^{j}; \qquad \frac{dx}{dt} = 0, \qquad \frac{dy}{dt} = \sum_{i+j=0}^{2} b_{ij} x^{i} y^{j}.$$

Для указанных систем функция

$$w: (x, y) \rightarrow x \quad \forall (x, y) \in \mathbf{R}^2$$

является частным интегралом.

Теорема: Для того чтобы автономная полиномиальная дифференциальная система второго порядка имела двукратный линейный частный интеграл, достаточно, чтобы она некоторым невырожденным линейным преобразованием приводилась к виду (1).

Действительно, производная в силу системы (1)

$$\mathbf{P}\frac{a+x}{x} = -a,$$

где $\mathbf{P}(x, y) = x^2 \partial_x + \sum_{i+j=0}^2 b_{ij} x^i y^j \partial_y \quad \forall (x, y) \in \mathbf{R}^2, \ a \in \mathbf{R} \setminus \{0\}.$

В виду определения кратности частного интеграла [2, ст. 193–194]

$$\varepsilon = \xi = 1,$$
 $h_1 = f_1 = g_1 = 1,$
 $Q_{11}(x, y) = a + x,$ $R_{11}(x, y) = -a \quad \forall (x, y) \in \mathbf{R}^2.$

Полином $Q_{11}(x, y)$ взаимно прост с полиномиальным частным интегралом *w*, а у полинома $R_{11}(x, y)$ степень меньше $p_1 - 1 = 1$.

Поэтому частный интеграл w системы (1) имеет кратность $\kappa = 1 + f_1 = 2$.

Поставим задачу: исследовать поведение траекторий системы (1) при $b_{02} = 0$, $|b_{00}| + |b_{01}| \neq 0$, далее системы (1'), на сферах Пуанкаре и Бендиксона.

Поведение траекторий на сфере Пуанкаре будем описывать посредством проективного атласа, состоящего из трех карт KP_1 , KP_2 , KP_3 . Карты атласа представляют собой фазовые портреты поведения траекторий на круге Пуанкаре соответственно системы (1') и систем, полученных из (1') при проективных преобразованиях Пуанкаре $x = z^{-1}$, $y = uz^{-1}$ и $x = vz^{-1}$, $y = z^{-1}$. Такой подход к описанию поведения траекторий дифференциальной системы на сфере Пуанкаре был предложен в [3].

Поведение траекторий на сфере Бендиксона будем описывать посредством атласа, состоящего из двух координатных карт KB_1 и KB_2 . Карта KB_1 представляет собой круг, состоящий из точек фазовой плоскости Oxy, с центром в точке O(0,0), на котором лежат все изолированные состояния равновесия системы (1'), отличные от бесконечно удаленного. Карта KB_2 – круг из точек плоскости $O^*\xi\zeta$ с центром в начале координат, на котором лежит не более одного изолированного состояния равновесия $O^*(0,0)$ системы, полученной из (1') при преобразовании Бендиксона

$$x = \frac{4\xi}{\xi^2 + \zeta^2}, \qquad v = \frac{4\zeta}{\xi^2 + \zeta^2} \quad \forall (\xi, \zeta) \in \mathbf{R}^2 \setminus \{(0, 0)\}.$$

Такой подход к описанию поведения траекторий дифференциальной системы на сфере Бендиксона предложен в [4].

Качественное исследование. При исследовании поведения траекторий системы (1') в окрестности экватора сферы Пуанкаре различаем два случая: $|b_{20}| + |b_{11} - 1| \neq 0$, когда (1') имеет неособый тип при преобразованиях Пуанкаре, и $b_{20} = 0$, $b_{11} = 1$, когда (1') имеет особый тип при преобразованиях Пуанкаре [3].

В первом случае экватор сферы Пуанкаре является траекторией системы (1'), которая первым и вторым преобразованиями Пуанкаре соответственно приводится к системам

$$\frac{du}{d\tau} = -b_{20} - (b_{11} - 1)u - b_{10}z - b_{01}uz - b_{00}z^2, \qquad \frac{dz}{d\tau} = z;$$
(2)
$$\frac{dz}{d\tau} = b_{01}z^2 + b_{11}zv + b_{00}z^3 + b_{10}z^2v + b_{20}zv^2,
$$\frac{dv}{d\tau} = b_{01}zv + (b_{11} - 1)v^2 + b_{00}z^2v + b_{10}zv^2 + b_{20}v^3,$$
(3)$$

где $dt = -zd\tau$.

Во втором случае экватор сферы Пуанкаре не является траекторией системы (1'), которая первым и вторым преобразованиями Пуанкаре соответственно приводится к системам

$$\frac{du}{dt} = b_{10} + b_{01}u + b_{00}z, \qquad \frac{dz}{dt} = -u;$$
(4)

$$\frac{dz}{dt} = -b_{01}z - v - b_{00}z^2 - b_{10}zv, \qquad \frac{dv}{dt} = -b_{01}v - b_{00}zv - b_{10}v^2.$$
(5)

Исследуя поведение траекторий системы (1') в окрестности бесконечно удаленной точки (северного полюса) сферы Бендиксона [4], различаем два случая: $|b_{20}| + |b_{11} - 1| \neq 0$, когда система (1') имеет неособый тип при преобразовании Бендиксона, и $b_{20} = 0$, $b_{11} = 1$, когда система (1') имеет особый тип при преобразовании Бендиксона [4].

В первом случае преобразованием Бендиксона систему (1') приводим к виду

$$\frac{d\xi}{d\rho} = -4\xi^{4} - 8b_{20}\xi^{3}\zeta + 4(1-2b_{11})\xi^{2}\zeta^{2} + 2b_{20}\xi^{4}\zeta - 2b_{01}\xi^{3}\zeta^{2} - 2b_{01}\xi^{2}\zeta^{3} - 2b_{01}\xi\zeta^{4} - \frac{b_{00}}{2}\xi^{5}\zeta - b_{00}\xi^{3}\zeta^{3} - \frac{b_{00}}{2}\xi\zeta^{5},$$

$$\frac{d\zeta}{d\rho} = 4b_{20}\xi^{4} + 4(b_{11}-2)\xi^{3}\zeta - 4b_{20}\xi^{2}\zeta^{2} - 4b_{11}\xi\zeta^{3} + b_{10}\xi^{5} + b_{01}\xi^{4}\zeta - b_{10}\xi\zeta^{4} - b_{01}\zeta^{5} + \frac{b_{00}}{4}\xi^{6} + \frac{b_{00}}{4}\xi^{4}\zeta^{2} - \frac{b_{00}}{4}\xi^{2}\zeta^{4} - \frac{b_{00}}{4}\zeta^{6},$$
(6)

где $(\xi^2 + \zeta^2)^2 d\rho = dt$, а во втором случае – к виду

$$\frac{d\xi}{d\gamma} = -4\xi^2 - 2b_{10}\xi^2\zeta - 2b_{01}\xi\zeta^2 - \frac{b_{00}}{2}\xi^3\zeta - \frac{b_{00}}{2}\xi\zeta^3,$$

$$\frac{d\zeta}{d\gamma} = \xi\zeta + b_{10}\xi^3 + b_{01}\xi^2\zeta - b_{10}\xi\zeta^2 - b_{01}\zeta^3 + \frac{b_{00}}{4}\xi^4 - \frac{b_{00}}{4}\zeta^4,$$
(6')

где $(\xi^2 + \zeta^2) d\gamma = dt$, так как $b_{11} \neq 2$.

31

Для систем (2) и (4) двукратным линейным частным интегралом на проективной фазовой плоскости $\mathbf{R}P^2$ с координатами (*x*, *u*, *z*) является

$$w_1: (x, u, z) \to x \quad \forall (x, u, z) \in \mathbf{R}P^2,$$

соответствующий бесконечно удаленной прямой-траектории x = 0.

Для систем (3) и (5) двукратным линейным частным интегралом на проективной фазовой плоскости $\mathbf{R}P^2$ с координатами (*y*, *z*, *v*) является

$$w_2: (y, z, v) \to v \quad \forall (y, z, v) \in \mathbf{R}P^2.$$

Для систем (6) и (7) двукратным линейным частным интегралом является

$$w_3: (\xi, \zeta) \to \xi \quad \forall (\xi, \zeta) \in \mathbf{R}^2.$$

Результаты исследования изолированных состояний равновесия систем (1'), (2)–(7) приведены в таблицах 1–3.

Сост. равн. Сист.	$A_1 \left(b_0 \right)$ $(b_{00} \neq 0)$	$(b_{00} = 0)$	$A_2 (b_1 \\ (b_{20} \neq 0))$	$\neq 1)$ $(b_{20} = 0)$	A_3	A_4
(1')	(0,-	$\frac{b_{00}}{b_{01}}\right)$	(кон $b_{20}x + (b_{11})$	цы» -1) <i>y</i> = 0	«концы» x = 0	бесконечно удаленная точка
(2)	«кон b ₀₁ u + b	нцы» b ₀₀ <i>z</i> = 0	$\left(\frac{b_{20}}{1-b}\right)$,0)	«концы» z = 0	—
(3)	$\left(-\frac{b_{01}}{b_{00}},0\right)$	«концы» v = 0	$\left(0,\frac{1-b_{11}}{b_{20}}\right)$	«концы» z = 0	(0,0)	—
(4)	«кон $b_{01}u + b_{01}u$	нцы» $b_{00}z = 0$	_	_	«концы» z = 0	_
(5)	$\left(-\frac{b_{01}}{b_{00}},0\right)$	«концы» v = 0	_	_	(0,0)	_
(6) (7)	$\left(\left(0, -\frac{4b_{01}}{b_{00}} \right) \right)$ бесконечно удаленная точка		_	_		(0,0)

Таблица 1 – Изолированные состояния равновесия систем (1'), (2)–(7)

Физико-математические науки и образование: проблемы и перспективы исследований

					Ĩ			~ 01						
		Дополн.	Сост. равнов.				Карты атласов							
D_{11} D_{0}	<i>b</i> ₀₀	<i>b</i> ₂₀	условия	A_1	A_2	A_3	A_4	KP_1	KP_2	KP ₃	KB_1	KB ₂		
	<1	≠0	≠0	$k_1 < 0$	c-y	у	2п2г	2п2э	1	2	3	35	36	
	<1	≠0	≠0	$k_1 > 0$	c-y	у	2п2г	2п2э	1	2	4	35	36	
	<1	≠0	= 0		c-y	у	2п2г	2п2э	1	2	5	35	36	
	<1	= 0	≠0		c-y	у	2п2г	2п2э	1	2	6	35	36	
	<1	= 0	= 0		c-y	у	2п2г	2п2э	1	2	7	35	36	
	=1	≠0	≠0	$b_{00}b_{01} < 0$	c-y	_	2пэг	2п2э	8	9	10	35	36	
	=1	≠0	≠0	$b_{00}b_{01} > 0$	c-y		2пэг	2п2э	8	9	11	35	36	
	=1	≠0	= 0	—	c-y	_	ву	2п2э	12	13	14	35	36	
	=1	= 0	≠0	_	c-y		2пэг	2п2э	8	9	15	35	36	
	=1	= 0	= 0		c-y		ву	2п2э	12	13	16	35	36	
	>1	\forall	= 0	$b_{10}b_{01} < 0,$ $k_2 \neq 0$	с-у	с	2п2э	2п2э	17	18	19	35	36	
	>1	≠0	≠0	$b_{00}b_{01} < 0,$ $k_2 \neq 0$	c-y	с	2п2э	2п2э	17	18	20	35	36	
	>1	≠0	< 0	$b_{00}b_{01} > 0,$ $k_2 \neq 0$	c-y	с	2п2э	2п2э	17	18	21	35	36	
	>1	≠0	>0	$b_{00}b_{01} > 0,$ $k_2 \neq 0$	c-y	с	2п2э	2п2э	17	18	22	35	36	
	>1	≠0	≠0	$k_1 < 0,$ $k_2 = 0$	c-y	с	2п2э	2п2э	23	24	25	35	36	
	>1	≠0	≠0	$k_1 > 0,$ $k_2 = 0$	с-у	c	2п2э	2п2э	23	24	26	35	36	
	>1	≠0	= 0	$b_{00}b_{01} < 0,$ $k_2 \neq 0$	c-y	c	2п2э	2п2э	17	18	27	35	36	
	>1	≠0	-0	$b_{00}b_{01} > 0,$ $k_2 \neq 0$	c-y	c	2п2э	2п2э	17	18	28	35	36	
	>1	<i>≠</i> 0	= 0	$k_2 = 0$	c-y	с	2п2э	2п2э	23	24	29	35	36	
	1	= 0	<i>7</i> ≠ 0	$k_2 = 0$	c-y	с	2п2э	2п2э	23	24	30	35	36	
	>1	=0	< 0	$k_2 \neq 0$	c-y	с	2п2э	2п2э	17	18	31	35	36	
~		= 0	>0	$k_2 \neq 0$	c-y	с	2п2э	2п2э	17	18	32	35	36	
	>1	= 0	= 0	$b_{10}b_{01} > 0,$ $k_2 \neq 0$	c-y	с	2п2э	2п2э	17	18	33	35	36	
	>1	= 0	= 0	$k_2 = 0$	c-y	с	2п2э	2п2э	23	24	34	35	36	

Таблица 2 – Характер состояний равновесия при $b_{01} \neq 0$

1.	1.	L	Дополн.	н. Сост. равнов.			Карты атласов					ĺ
<i>D</i> ₁₁	<i>D</i> ₁₀	<i>b</i> ₂₀	условия	A_2	A_3	A_4	KP_1	KP ₂	KP ₃	KB ₁	KB ₂	
<-1	≠0	= 0		у	2п2г	4п4э	37	38	39	63	64	
<-1	= 0	= 0	—	у	2п2г	4п4э	37	38	40	63	64	
<-1	\forall	< 0	—	у	2п2г	4п4э	37	38	41	63	64	
<-1	\forall	>0	—	у	2п2г	4п4э	37	38	42	63	64	
∈[−1,1)	\forall	< 0		у	2п2г	2п2э	43	44	45	65	36	D
$\in [-1,1),$ $\neq 0$	\forall	= 0	_	у	2п2г	2п2э	43	44	46	65	36	
∈[-1,1)	\forall	>0		у	2п2г	2п2э	43	44	47	65	36	
= 0	\forall	= 0		у	2п2г	2п2э	43	44	48	65	36	
=1	\forall	= 0			2пэг	2п2э	49	50	51	65	36	
=1	\forall	≠0	$b_{00}b_{20} < 0$		3п2э2г	2п2э	52	53	54	65	36	
=1	\forall	≠0	$b_{00}b_{20} > 0$		у	2п2э	55	55	56	65	36	
>1	≠0	= 0	—	c	2п2э	2п2э	57	58	59	65	36	
>1	= 0	= 0		с	2п2э	2п2э	57	58	60	65	36	
>1	\forall	< 0		c	2п2э	2п2э	57	58	61	65	36	
>1	\forall	>0		с	2п2э	2п2э	57	58	62	65	36	

Таблица 3 – Характер состояний равновесия при $b_{01} = 0, b_{00} \neq 0$

В таблице 1 указаны условия существования изолированных состояний равновесия (в скобках непосредственно за обозначением состояния равновесия) и их расположение на проективных фазовых плоскостях систем (1'), (2)–(7).

В таблицах 2 и 3 указан вид изолированных состояний равновесия систем (1'), (2)–(7). При этом использовались условные обозначения:

$$k_1 = b_{00}b_{01}b_{20}, \quad k_2 = (1 - b_{11})(b_{01}b_{10} - b_{00}b_{11}) + b_{01}^2b_{20},$$

«∀» – любое; «с» – седло; «у» – узел; «ду» – дикритический узел; «ву» – вырожденный узел; «с-у» – седло-узел; «2п2г» – сложное состояние равновесия, состоящее из двух параболических и двух гиперболических секторов Бендиксона; «2пэг» – сложное состояние равновесия, состоящее из одного эллиптического, двух сопровождающих его параболических и одного гиперболического секторов Бендиксона; «2п2э» – сложное состояние равновесия, состоящее из двух эллиптических и двух сопровождающих их параболических секторов Бендиксона; «4п4э» – сложное состояние состоящее равновесия, ИЗ четырех эллиптических И четырех сопровождающих их параболических секторов Бендиксона; «3п2э2г» сложное состояние равновесия, состоящее из трех параболических, двух эллиптических и двух гиперболических секторов Бендиксона.

Поведение траекторий системы (1') с учетом расположения и характера ее состояний равновесия определяется однозначно. При этом

34

учитывается отсутствие предельных циклов. Последнее следует уже из того, что все состояния равновесия системы (1') расположены на прямых-траекториях x = 0 и z = 0 проективной фазовой плоскости (z, x, y).

Атласы поведения траекторий. В таблицах 2 и 3 для каждого из случаев указаны номера рисунков, на которых построены карты атласов поведения траекторий системы (1') на сферах Пуанкаре и Бендиксона.

Проективные атласы систем, полученных из (1') при первом и втором проективных преобразованиях Пуанкаре, соответственно состоят из KP_2 , KP_3 , KP_1 и KP_3 , KP_1 , KP_2 карт проективного атласа системы (1').

Сборник научных трудов преподавателей физико-математического факультета

Физико-математические науки и образование: проблемы и перспективы исследований

В заключение коротко о результатах, полученных в статье:

1) построены проективные атласы поведения траекторий систем (1'), (2)–(5) на сфере Пуанкаре;

(2) построены атласы поведения траекторий системы (1') на сфере Бендиксона.

Литература

1. Бирук, С.М. Качественное исследование в целом класса квадратичных систем с двукратным линейным частным интегралом / С.М. Бирук // Веснік ГрДУ. Сер. 2. – 2007. – № 3(57). – С. 52–57.

2. Горбузов, В.Н. Интегралы дифференциальных систем: монография / В.Н. Горбузов. – Гродно : ГрГУ, 2006. – 447 с.

3. Горбузов, В.Н. Траектории полиномиальной дифференциальной системы на сфере Пуанкаре / В.Н. Горбузов, И.В. Королько // Дифференц. уравнения. – 2002. – Т. 38, № 6. – С. 845–846.

4. Горбузов, В.Н. Траектории дифференциальных систем на сфере Бендиксона / В.Н. Горбузов, И.В. Королько, В.Ю. Тыщенко // Доклады Нац. акад. наук Беларуси. – 2004. – Т. 48, № 4. – С. 15–19.