Г. В. КУЛАК, Г. В. КРОХ, В. И. МЕСТЕЦКИЙ, А. А. ДАНИЛЮК МГПУ им. И.П. Шамякина (г. Мозырь, Беларусь)

АКУСТООПТИЧЕСКАЯ МОДУЛЯЦИЯ БЕССЕЛЕВЫХ СВЕТОВЫХ ПУЧКОВ ВЫСШИХ ПОРЯДКОВ В КРИСТАЛЛАХ ПАРАТЕЛЛУРИТА

В настоящее время имеется незначительное число работ по акустооптическому (AO)взаимодействию бесселевых световых пучков (БСП) высших порядков [1], [2]. В работе [2] исследованы особенности AO-преобразований при коллинеарном распространении ультразвука и дифрагированных световых пучков. В настоящей работе с использованием метода интегралов перскрытия рассмотрено неколлинеарное AO-взаимодействие бесселевых световых пучков высоких порядков при попутном распространении в одноосных гиротропных кристаллах парателлурита (*TeO*₂).

Известно, что при АО-взаимодействии, кроме обычного продольного фазового согласования, бесселевы световые пучки должны удовлетворять условиям поперечного фазового согласования. Такое согласование связано с тем, что БСП с различными углами конусности (γ) имеют различную пространственную структуру и, как следствие, различные величины интегралов перекрытия ($g_{\pm,\pm}$) дифрагированных пучков различной поляризации.

Предполагается, что на границе области АО взаимодействия формируются избирательно БСП с правой или левой эллиптической поляризацией. В таком случае варьированием частоты ультразвука возможно достижение различных типов преобразования эллиптически-поляризованных дифрагированных волн (рисунок 1).

На рисунке 2а представлена зависимость эффективности брэгговской АО-дифракции η в первом дифракционном порядке азимутально-однородного БСП (*m*=0) в кристалле *TeO*₂ от интенсивности ультразвука *I_a* при максимальном значении интеграла перекрытия *g_n*. Зависимость эффективности дифракции η азимутально-неоднородного БСП (*m*=1) от интенсивности ультразвука *I_a* для различных состояний поляризации падающего и дифрагированного света представлена на рисунке 26.

 а) изотропная дифракция (1); анизотропная дифракция (2); б) дифракция правоциркулярнополяризованной волны в левоциркулярнополяризованную (1), левоциркулярнополяризованной в левоциркулярнополяризованную (2), правоциркулярнополяризованной в правоциркулярнополяризованную (3), левоциркулярнополяризованной в правоциркулярнополяризованную (4) (кристалл *TeO*₂, продольная УЗ

волна, $\tilde{K} \parallel [100]$, m=0 (a), m=1 (б), $\gamma=0,5^{\circ}$, $\rho=83$ град/мм, $R_{\rm H}=1$ мм – радиус БСП, $l_1=1$ см, $l_2=2$ см – размеры пьезопреобразователя, $\lambda_0=0,63$ мкм; интегралы перекрытия: $g_{+,+} = g_{-,-} = 0,53$,

 $g_{-,+} = g_{+,-} = 0,98$ (a); интегралы перекрытия: $g_{-,+} = 0,72, g_{-,-} = 0,73, g_{+,-} = 0,87, g_{+,+} = 0,84$ (б) Рисунок 2. – Зависимость эффективности дифракции η от интенсивности ультразвука для

Рисунок 2. – Зависимость эффективности дифракции у от интенсивности ультразвука для падающего БСП нулевого порядка (а) и первого порядка (б)

Наибольшая эффективность дифракции достигается для АО преобразования левоэллиптическиполяризованной световой волны в правоэллиптическиполяризованную. Такая особенность дифракции БСП определяется величиной интеграла перекрытия соответствующего дифракционного процесса и эффективной фотоупругой постоянной.

На рисунке 3 представлена зависимость эффективности дифракции η от отстройки частоты ультразвука Δf от брэгговской f_0 для дифракции азимутально-однородного БСП (*m*=0) (рисунок 3а) и азимутально-неоднородного (*m*=1) (рисунок 3б).

анизотропная дифракция (а); дифракция левоэллиптическиполяризованной

в правоэллиптическиполяризованную (б) при различных углах α: 0,01 (1), 0,02 (2), 0,03 рад (3) (кристалл *TeO*₂, сдвиговая УЗ волна, $\ddot{K} \parallel [110]$, $\ddot{U} \parallel [\overline{1} 10]$, m=0 (а), m=1 (б), $\gamma=0,5^{0}$, $\beta=87$ град/мм, $R_{\rm H}=1$ мм, $P_{a}=0,013$ Вт, $f_{0}=100$ МГц, $l_{1}=1$ см, $l_{2}=2$ мм, $\lambda_{0}=0,63$ мкм)

Рисунок 3. – Зависимость эффективности дифракции η от отстройки частоты ультразвука Δf от брэгговской для падающего БСП нулевого порядка (а) и первого порядка (б) Из рисунке За следует, что ширина полосы пропускания модулятора при изотропной АОдифракции БСП нулевого порядка составляет $\Delta f_{1/2}=16$ МГц. АО-преобразование с изменением поляризации (анизотропная дифракция) не представляет значительного интереса вследствие малой эффективности дифракции. При дифракции БСП с азимутально-неоднородным распределением амплитуды (*m*=1) (рисунок 36) наибольший интерес представляет дифракция левоэллиптическиполяризованной световой волны в правоэллиптическиполяризованную. При этом ширина полосы пропускания модулятора составляет $\Delta f_{1/2}=18$ МГц.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Белый, В.Н. Поляризационно-независимая акустооптическая модуляция бесселевых световых пучков / В.Н. Белый [и др.] // Журнал прикладной спектроскопии. – 2014. – № 1. – С. 75–81

2. Belyi, V.N. Peculiarities of Acoustooptic Transformation of Bessel Light Beams in gurotropic Crystals / V.N. Belyi [and other] // Universal Journal of Physics and Application. – 2015. – V. 9(5). – P. 220–224.