Л. А. ИВАНЕНКО, Е. Н. ПОВХ

МГПУ им. И.П. Шамякина (г. Мозырь, Беларусь)

МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ ОБУЧЕНИЯ УЧАЩИХСЯ ПРЕОБРАЗОВАНИЮ ВЫРАЖЕНИЙ, СОДЕРЖАЩИХ ОБРАТНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ

Задания на преобразование выражений, содержащих обратные тригонометрические функции, часто встречаются на централизованном тестировании по математике. Учебные пособия для средних задания, в которых требуется вычислить значение выражения.

$$\text{Например: a) } \arcsin \left(-\frac{\sqrt{2}}{2} \right) - \arcsin \frac{1}{2} - \arccos \left(-\frac{\sqrt{3}}{2} \right); \ 6) \ \sin \left(\arccos \frac{1}{2} \right); \ B) \ \arccos \left(\cos \left(-\frac{17\pi}{12} \right) \right).$$

Для их решения достаточно знания таблицы значений тригонометрических выражений и свойств обратных тригонометрических функций: $\arcsin(-x) = -\arcsin x$, $\arccos(-x) = \pi - \arccos x$ и т.п.

Например:
$$\sin \left(\arccos \frac{1}{2} \right) = \sin \left(\frac{\pi}{3} \right) = \frac{\sqrt{3}}{2}$$
.

Однако в ЦТ в основном содержатся более сложные задания, которые невозможно решить вышеприведенными способами. Например, $\sin\!\left(\arccos\frac{3}{5}\right)$. Рассмотрим стандартный способ выполнения заданий такого плана.

Пример 1. Вычислить $\sin\left(\arccos\frac{3}{5}\right)$. Пусть $\alpha=\arccos\frac{3}{5}$, тогда $\cos\alpha=\frac{3}{5}$. Остается вычислить $\sin lpha$. Однако для вычисления значения $\sin lpha$ необходимо знать, углом какой четверти является угол lpha . С одной стороны $\arccos a \in [0,\pi]$, т.е. первой или второй четверти. С другой стороны $\cos \alpha = \frac{5}{5} \succ 0$, поэтому α может принадлежать первой или четвертой четверти. Следовательно, $\alpha \in I$ четверти. Далее после несложных вычислений получаем, что $\sin \alpha = \frac{4}{5}$.

Пример 2. Вычислить $2\sqrt{35}tg\left(\arccos\frac{1}{6}\right)$. Пусть $\alpha = \arccos\frac{1}{6}$, $a \in [0,\pi]$. Тогда $\cos\alpha = \frac{1}{6} \succ 0$ $a\in\left[-rac{\pi}{2},rac{\pi}{2}
ight]$. Следовательно, $lpha\in I$ четверти. $\sinlpha=\pm\sqrt{1-\cos^2lpha}$. Учтя, что $lpha\in I$ четверти, получим $\sin \alpha = \sqrt{1-\cos^2 \alpha} = \sqrt{1-\frac{1}{36}} = \frac{\sqrt{35}}{6}$. Так как $tg\alpha = \frac{\sin \alpha}{\cos \alpha}$, то $tg\alpha = \frac{\sqrt{35}}{6} \div \frac{1}{6} = \sqrt{35}$. $2\sqrt{35}tg\left(\arccos\frac{1}{\epsilon}\right) = 2\sqrt{35}\cdot\sqrt{35} = 70.$

При выполнении заданий такого типа наибольшую сложность у учащихся вызывает нахождение четверти, в которой находится угол α . Несложно доказать, что углы $\arcsin a$, $\arccos a$, $\arccos a$, $\arccos a$ при $a \succ 0$ всегда принадлежат первой четверти. Это свойство значительно облегчает выполнение заданий на вычисление значений выражений.

Пример 3. Вычислить $15tg\left(arcctg\frac{1}{3}-arctg\frac{1}{2}\right)$. Пусть $\alpha=arcctg\frac{1}{3}$ и $\beta=arctg\frac{1}{2}$. Эти углы принадлежат первой четверти. Тогда $ctg\alpha = \frac{1}{2}$ и $tg\beta = \frac{1}{2}$.

$$15tg\left(arcctg\frac{1}{3} - arctg\frac{1}{2}\right) = 15tg\left(\alpha - \beta\right) = 15\frac{tg\alpha - tg\beta}{1 + tg\alpha \cdot tg\beta} = 15\frac{3 - \frac{1}{2}}{1 + 3 \cdot \frac{1}{2}} = 15.$$

Таким образом, выполнение несложных преобразований выражения в соответствии с вышеприведенным свойством позволит учащимся быстро вычислить значение выражения, содержащего обратные тригонометрические функции.

ЛИТЕРАТУРА

1. Алгебра : учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. обучения с 12-летним сроком обучения (базовый и повышенный) / Е.П. Кузнецова [и др.]; под ред. Л.Б. Шнепермана. — Минск : Нар. асвета, 2007. - 383 с.

