
 

257 
 

M. NEAGU
1
, E.M. OVSIYUK

2
 

1
Transilvania University of Braşov (Braşov, Romania) 

2
Mozyr State Pedagogical University named after I.P. Shamyakin (Mozyr, Belarus) 

 

RABINOVICH-FABRIKANT DYNAMICAL SYSTEM 

AND LAGRANGE-HAMILTON GEOMETRIES 

 

In this paper, via the least squares variational method, we develop the Lagrange-Hamilton 

geometries (in the sense of nonlinear connections, d-torsions and Lagrangian Yang-Mills 

electromagnetic-like energy) induced by the well known Rabinovich-Fabrikant dynamical 

system that exhibits a chaotic behaviour.  

1 Lagrange-Hamilton geometries produced by a given dynamical system  

Let M  be a n -dimensional smooth manifold, whose coordinates are  
=1,

.i

i n
x  Let TM  

(respectively T M ) be the tangent (respectively cotangent) bundle, whose coordinates are 

 
=1,

,i i

i n
x y  (respectively  

=1,
, ).i

i i n
x p  

Let us consider a vector field  
=1,

= ( )i

i n
X X x  on M , which produces the dynamical 

system 
 

 = ( ( )), =1, .
i

idx
X x t i n

dt
 (1) 

 

Because the solutions of class 2C  of the dynamical system (1) are the global minimum 

points for the least squares Lagrangian :L TM R , given by (see the book [1]) 
 

   ( , ) = ( ) ( ) ,i i j j

ijL x y y X x y X x    (2) 

 
it follows that, via its Euler-Lagrange equations, we can construct an entire collection of nonzero 
Lagrangian geometrical objects (such as nonlinear connection, d-torsions and Yang-Mills 
electromagnetic-like energy) that characterize the initial dynamical system (1). 

Also, if we construct the least squares Hamiltonian :H T M R , associated with the 
Lagrangian (2), which is defined by (see [3]) 

 

 ( , ) = ( ) ,
4

ij
k

i j kH x p p p X x p


  (3) 

 

where = / r

rp L y   and = r

rH p y L , we can build a collection of nonzero Hamiltonian 

geometrical objects (such as nonlinear connection and d-torsions), which also characterize the 
system (1). 

It is important to note that the above Lagrange-Hamilton geometries produced by the 
Lagrangian (2) and Hamiltonian (3) are exposed in details in the monographs [1] and [3]. These 
are achieved via the nonzero geometrical objects: 

1.  
, =1,

1
= = ( ) ( )

2

i T

j i j n
N N J X J X   

 – the Lagrangian nonlinear connection; 

2.  
, =1,

= = ,i

k jk ki j n

N
R R

x




   =1, ,k n  – the Lagrangian d-torsions; 

3. 
1

( ) =
2

Tx Trace F F   EYM , where =F N , – the Yang-Mills electromagnetic-like 

energy; 
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4.  
, =1,

= = ( )ij i j n
N J X N  ( )T J X  – the Hamiltonian nonlinear connection; 

5.  
, =1,

= = ( ) ( ) = 2 ,T

k kij kki j n
R J X J X R

x


   

R    =1, ,k n  – the Hamiltonian d-

torsions, where  
, =1,

( ) = /i j

i j n
J X X x   is the Jacobian matrix of X . 

2 Lagrange-Hamilton geometries for Rabinovich-Fabrikant dynamical system 

If we take the particular 3-dimensional manifold 
3= ,M R  whose coordinates are 

 1 2 3= , = , = ,x x x y x z  and we consider the vector field  
=1,3

= ( , , ) ,i

i
X X x y z  where 

 

   1 2 2 2( , , ) = 1 , ( , , ) = 3 1 ,X x y z y z x x X x y z x z x y        

 

 3( , , ) = 2 , , > 0,X x y z z xy     

 

then we find the well known Rabinovich-Fabrikant (RF) dynamical system initially written  
in 1979 (see [4]). 

Remark 1 The RF dynamical system is used in Physics and Engineering because it 
allows the unexpected and potential responses to perturbations in a structure like a bridge or 
aircraft wing [2].  

The Jacobian matrix = ( )J J X  of the vector field ( , , )X x y z  is expressed by  
 

 

2

2

2 1

= 3 1 3 3

2 2 2

xy z x y

J z x x

yz xz xy







   
 

  
     

, 

 

and, consequently, we find the Lagrange-Hamilton geometrical objects that characterize the RF 
dynamical system: 

1. the Lagrangian nonlinear connection matrix: 
 

2

2

0 1 2 / 2
1

= = 1 2 0 3 / 2 ;
2

/ 2 3 / 2 0

T

z x y yz

N J J z x x xz

y yz x xz

    
 

         
   

 

 

2. the Lagrangian d-torsion matrices: 
 

1

0 4 0

= = 4 0 3 / 2 ,

0 3 / 2 0

x
N

R x z
x

z

 
  

     

 

 

2

0 0 1/ 2

= = 0 0 0 ,

1/ 2 0 0

z
N

R
y

z

  
  

    

 

 

3

0 1

= = 1 0 ;

0

y
N

R x
z

y x
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3. the Lagrangian Yang-Mills electromagnetic-like energy: 
 

 
2 2

2
2 3

( , , ) = 1 2 ;
2 2

y x
x y z z x yz xz

   
        

   
EYM  

 

4. the Hamiltonian nonlinear connection matrix: 
 

 

2

2

4 2 4 2 2

= = 4 2 2 3 2 ;

2 3 2 4

T

xy z x y yz

N J J z x x xz

y yz x xz xy







   
 

   
     

 

 

5. the Hamiltonian d-torsion matrices are = 2 ,k kRR    =1,3.k   

Open problem. The surfaces of constant level of the Lagrangian Yang-Mills 

electromagnetic-like energy produced by the RF dynamical system could have important 

connotations for the physical phenomena taken in study. For such a reason, it is an open problem 

to find the physical information contained in the shape of the surfaces of constant level 

 

 
2 2

2
2 3

: 1 2 = > 0.
2 2

C

y x
z x yz xz C

   
         

   
 

 
In this direction, we believe that the computer drawn graphics of these surfaces are 

important for the study of the physical phenomena involved in the RF dynamical system. 
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ON DIFFERENT CONDITIONS OF THE EXISTENCE 

OF ELECTRON-PROTON-NEUTRON MATTER 

 
Electron-proton-neutron (enp -) matter is one of the objects of research of modern 

astrophysics of superdense matter [1, p. 167–186; 2, p. 270–272; 3, p. 506–512]. Since the 

conditions of its existence can be different (which leads to a difference in a number of 

characteristics), a comparative analysis of various models in which the appearance of enp -phase 

is possible is of interest. 

The results of such a comparative analysis are presented below in the form of a table. 
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