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The definition of the 6 large components remains the same, two linear constraints 

preserve their form as well. All algebraic transformations proving existence of only 

4 independent equations also are the same. The difference consists only in the new and more 

complicated expressions for generalized derivatives. Correspondingly, we obtain the generalized 

equation 

 

2 2 2

0 1 2 3 [23] 1 [31] 2 [12] 3 4

1 1
( ) = ( ( ) ( ) ( )) ( ) ,

2 2
iD x D x D x D x D S D S D S

M M
         

 

where the commutators [ ] = ( ) ( ) ( ) ( )kl k l l kD D x D x D x D x  are used. 
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SPIN 3/2 PARTICLE IN THE COULOMB FIELD, TETRAD FORMALISM, 

NONRELATIVISTIC APPROXIMATION 

 
In the present paper, we will study the nonrelativistic approximation for a spin 3/2 

particle [1–3] in the external Coulomb field. In [4] (see also [5; 6]), the nonrelativistic equation 

was derived from the relativistic Pauli – Fierz theory; in this case, the Cartesian coordinates were 

used and the presence of an arbitrary electromagnetic field was taken into account. In the present 

paper, the system of radial equations describing the nonrelativistic spin 3/2 particle in the 

Coulomb field will be obtained. Exact solutions are found in terms of the confluent 

hypergeometric functions, and the corresponding energy spectra are obtained. 

In [4; 5], the system of radial equations for spin 3/2 particle in absence of external fields 

was derived. The substitution for the wave function has the form [6] 

 

 

0 1/2 1 3/2 2 1/2 3 1/2

0 1/2 1 1/2 2 1/2 3 3/2
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where we use the Wigner D -functions, 
,= ( , ,0); =1/ 2,3 / 2,5 / 2,... .j

mD D j   
 From 

diagonalization of the space reflection operator, we get the following restrictions (where = 1  ):  

 

0 0 1 3 2 2 3 1 0 0 1 3 2 2 3 1= , = , = , = , = , = , = , = ;d f d f d f d f h g h g h g h g          

these restrictions preserve only 8 independent functions, so the substitution (1) is simplified. 
After separating the variables, in [4; 5] where found 8 equations; they contain parameters 

= 1/ 2, = ( 1/ 2)( 3 / 2)a j b j j   ; the equations for states with opposite parities differ only 

in sign at the mass, so we follow only the case = 1  ; we omit their explicit form.  
There is the well-known method for obtaining the nonrelativistic approximation 

in equations for spin 3/2 particle in Cartesian [7] 

 
0 1 2 3

0 1 2 3[ ] = 0.cartY iY Y Y iM          

 

On the base of 3-order minimal equation for the matrix 
0Y , we introduce three projective 

operators that allow us to decompose the wave function into the sum of three components: one 
large and two small. In order to apply the same method in spherical coordinates, we need explicit 
form for three matrices (see notations in [4; 5]) 

 

 0 1 0 0 5 1 [01] 2 [02] 3 [03]

5 [01] [02] [03] [23] [31] [12]

01 02 03 23 31 12

= , = ,

= { }.

Y

s s s s s s

      

      

       

           
 

 

Let us find the 16-dimensional representation for the matrix 
0Y . Its minimal equation is 

2 2

0 0( 1) = 0 .Y Y   We can introduce three projective operators 

 
2 2 2

0 0 0 0 0 0=1 , = ( 1) / 2, = ( 1) / 2.P Y P Y Y P Y Y       

 
Below we need the explicit form of these operators, due to their bulkiness, we do not 

present it here. Further we obtain the following expressions for complete wave function (we 
introduce short notations for large and small components, and take into account the parity 
restrictions) 
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The truncated 8-dimensional column is composed of functions included in the  

8-dimensional radial system. We substitute these relations into the radial system derived in [4; 5];  
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in the same time we separate the rest energy by the formal change = ( ), << ;m E E mт  then 

after some linear recombining within equations we derive 
 

52 1 2 4
4 5 2

4 '2 2( 5) 2 2 4 2 ' 4 '4( 1) 4( 1)
( 2 ) ( 6 ) 4 2 = 0,

ya L bL L ya a
y i y i i y

mr mr mr mr m m m

  
        

 

52 1 2 4
5 4

4 '2 2( 3) 2 2 4 2 ' 4 '4( 1) 8
( 6 ) ( 6 ) = 0,

ya y by y ya
y i i y

mr mr mr m m m mr

 
         

 

51 2 4 1 1 1
22 2 2 4 4 ' 4

= 0,
bybS bS by iEL y y

mr mr mr mr m m mr
       

 

52 1 2 4 1 1 1
24 2 2 2 4 ' 4 4 (2 )

= 0,
bybL bS bS by L L i m E y

mr mr mr mr mr m mr m


        

 

51 2 2 4 1 2
2( 1)2( 1) 2( 1) 4 2(1 3 ) 4 12a ya S a S ay a y by iEL

mr mr mr mr mr mr m

  
        

51 2 2 4
2 2 '2 2 ' 2 2 ' 4 ' 2 2 '

= 0,
yS S y y

m m m m m
      

 

52 1 2 4
2 ( 4 (2 ) 1)4( 2) 2 ( 2 1) 2 ( 2 1) 2( 1)y a ir m Ea L S a imr S a imr a y

mr mr mr mr mr

       
       

52 1 2 4
2

2 2 '4 ' 2 2 ' 2 2 ' 2 2 '
4 ( 2) = 0,

yL S S yE
i y

m m m m m m
      

 
 

51 2 4
2 (3 8 3)2 ( 3 4 3) 2 (3 4 3) 2 ( 8 5) y a irES a imr S a imr y a irE

mr mr mr mr

       
     

52 1 2 1 2 2 4
2 2 '4( 2) 4 4 2 2 ' 2 2 ' 4 ' 2 2 '

= 0,
ya y by iEL S S y y

mr mr m m m m m m


         

 

52 4
1 2

2 ( 2 (2 ) 1)2 2( 1) 2 ( 2 (2 ) 1)2 2 2( 1)
( 2 ) ( 2 )

y a ir m Ea L y a ir m Ea a
S i S i

mr mr mr mr mr

      
        

1 22 2 4 2(2 )
= 0.

bL i m E y

mr m


   

 
When performing the nonrelativistic approximation, it should be assumed that the order 

of smallness of variables is governed by relations: 

 

2
2

2

1 1
1, , , , ,

1 1
, , , , 1.

d
L y x S x x x

m dr rm

d E d
rm r x x rE x r

x m dr m dr

: : : : :

: : : : :

 

 
In the above equations, we preserve the quantities of the leading order. Let us take into 

account the obtained relations 5 4 1 2= , =y y S S  into equations 
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1 2 2
2 4
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2 2 2 2( 1)
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From the equations without the derivatives of small variables, we eliminate the quantities 

1 1 2 4, , ,S y y y , and substitute these expressions into two remaining equations, as a result we obtain 

 
2

1 1 1 1 22 2

2

2 2 2 2 12 2

2 3
' ' 2 = 0,

2 2 ( 3) 10
' ' 2 = 0.

3

b b
L L L mEL L

r r r

a a b b
L L L mEL L

r r r

    

  
   

 

 

Thus, two coupled 2nd order differential equations for the variables 1 2,L L  are derived; 

this system describes a spin 3/2 particle in spherically symmetric case. 

Let us take into account the presence of the Coulomb field by the formal change 

/E E r   (we group the terms in a special way): 

 
2

2

1 1 22 2

2 2

2 2 12 2

2 1
[ 2 ( )] = [ 3 ],

2 1 2 ( 3) 10
[ 2 ( )] = [ ].

3

d d
m E L b L bL

dr r dr r r

d d a a b
m E L L bL

dr r dr r r





   

  
   

 

 
After performing the transformation, we have the separate equations for the functions 

1 2,L L :  

 
2 2 2 2

1 22 2 2 2

2 ( 2) 1/ 4 2 1/ 4
[ 2 ( ) ] = 0, [ 2 ( ) ] = 0,

d d j d d j
m E L m E L

dr r dr r r dr r dr r r

   
         

 
they have the same structure, they have the following solutions 

 
2 2

1/2 2

2 22 2
= = , = ( ,2 1, ).

2 2( 1/ 2 )

j mErm m
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PROBABILITY OF SAFE OPERATION AND FAILURE 

OF THE TRACTION TRANSFORMER 

 

Traction transformers are part of the converter of the locomotive. Their main function is 

to reduce the mains voltage to the voltage U2 required to power traction motors in current 

receivers. Voltage U2 is used to adjust the operating voltage of Uv and the motor to the allowable 

rectified voltage [1–7]. 

Traction transformers perform the following functions: 

 Reduces the mains voltage to the level of the traction motor and other electrical 

equipment; 

 Controls the output voltage according to the given norms; 

 Provides energy to the power system of passenger cars [2–5]. 

Traction transformers in electric locomotives differ from conventional transformers by a 

very wide range of output voltage control. 

Traction oil transformers, designed to reduce the AC voltage to the required level, play an 

important role in providing reliable and uninterruptible power supply to railway transport. 

During operation, many faults are observed in traction transformers. 

The flawless operation of transformers is one of the most important and most expensive 

stages of any power system. 

It uses many technologies to determine the technical condition of transformers and to 

predict possible faults in them [3–9]. 

It includes the following technologies: 

 Inspections of transformer oils (chromatographic, laboratory); 

 Thermal Inspections; 

 Technical inspections, etc. 

There are also other forecasting methods, such as visual analysis, inspections, status 

monitoring, and statistical control methods of processes. 
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