ИССЛЕДОВАНИЕ СТАБИЛЬНОСТИ ЭМУЛЬСИЙ, ПОЛУЧЕННЫХ ИЗ ОТХОДОВ НЕФТЕПЕРЕРАБОТКИ

Русанов Максим (УО МГПУ им. И. П. Шамякина, Беларусь) Научный руководитель – Л. Н. Бакланенко, канд. техн. наук, доцент

Проблема утилизации нефтешламов является одной из наиболее актуальных экологических проблем. Исследование закономерностей контактного взаимодействия сопряженных поверхностей узлов трения при использовании смазочной композиции на основе отработанных регенерированных СОЖ регенерированных смазочных материалов, позволит установить природу протекающих при этом процессов и предложить методику использования смазочных материалов на основе отработанных СОЖ в узлах трения [1].

Работа посвящена использованию отходов нефтепереработки (нефтешлама) в качестве составляющих компонентов получения смазочно-охлаждающих жидкостей при обработке металлов резанием. При этом проводились лабораторные исследования по материаловедению и технологии обработки стали 45 при сверлении, оценивалось качество обработки в сравнении СОЖ изготовленная из эмульсола и нефтешлама.

Нефтешлам получается при дренировании, пропарке нефтепроводов, емкостей и резервуаров на ОАО «Мозырский НПЗ», и ежегодно тысячи тонн новых нефтешламов добавляются к уже имеющимся, увеличивая негативное воздействие на окружающую среду. Наши исследования направлены на использование нефтешлама в качестве основного компонента для изготовления СОЖ.

Испытания стойкости сверл d = 5 мм из быстрорежущей стали P6M5 проводились на станке $2\Gamma 125$ при различных сочетаниях подач и скоростей резания.

В качестве охлаждающих жидкостей применялись:

- 1) 5 % водная эмульсия на основе эмульсола НГЛ-205;
- 2) СОЖ на основе нефтешлама.

Износ сверла определяли по наиболее изношенным участкам задней поверхности режущих лезвий на инструментальном микроскопе типа МИМ-7.

Геометрические параметры сверла: $2\phi = 118^0$; $2\phi_0 = 75^0$; $\gamma = 7^0$; $\alpha_0 = 10^0$. Режим резания изменялся в следующих пределах: скорость резания — 14...22 м/мин, подача - 0.1...0.2 мм/об.

Зависимость между стойкостью сверла и скоростью резания определяли с помощью метода ортогонального центрального композиционного планирования.

На рисунке 1 показаны результаты исследований зависимости износа сверла (h_3) от скорости (v) при использовании стандартной и исследуемой СОЖ. Сравнительный анализ полученных зависимостей показывает, что характер износа в обоих случаях практически одинаковый — с увеличением скорости износ увеличивается. Причем для исследуемой СОЖ

при скоростях свыше 20 м/с имеет место уменьшение износа сверла по сравнению со стандартной. На наш взгляд, это связано с тем, что разработанная СОЖ обеспечивает лучший теплоотвод в зоне резания. В результате исследования установлено, что использование нефтешлама в качестве основного компонента при изготовлении СОЖ можно использовать при сверлении черных металлов.

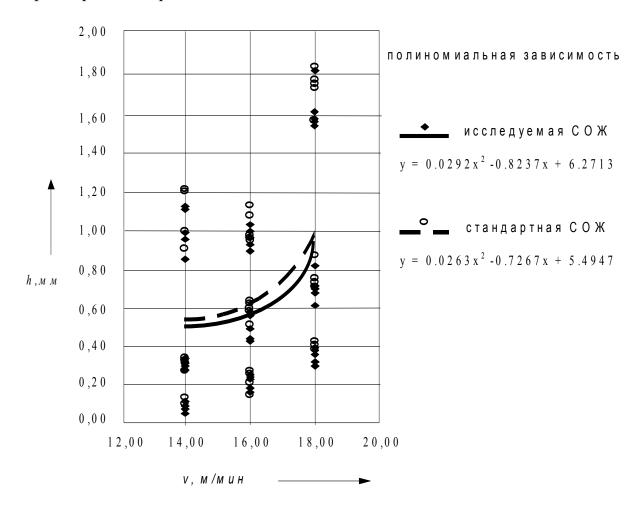


Рисунок 1 – Зависимость износа сверла при использовании СОЖ [2]

Список использованной литературы

- 1. Малиновский, Т. Г. Масляные смазочно-охлаждающие жидкости для обработки металлов резанием. Свойства и применение / Т. Г. Малиновский . М. : Химия, 1993. 160 с.
- 2. Бакланенко, Л. Н. Технология повторного использования отработанных регенерированных смазочно-охлаждающих жидкостей : моногр. / Л. Н. Бакланенко. Мозырь : УО МГПУ им. И. П. Шамякина, 2008.-95 с.