В Беларуси в природно-климатических условиях отдельные сорта винограда могут выращиваться в неукрывной культуре с минимальным уровнем применения пестицидов и при этом дают стабильно высокие урожаи отличного качества. Однако в целом темпы и масштабы продвижения по этому направлению в Беларуси также существенно отстают. Проблемы интродукции новых сортов не исчерпываются подбором ассортимента из потенциально пригодных, — для перспективных сортов возникает необходимость проведения комплексных испытаний в лабораторных и полевых условиях на их соответствие регионов.

Таким образом, аиболее перспективными для выращивания по комплексу полезно хозяйственных признаков являются сорта Тимур и Агат Донской. При взвешенном, научно обоснованном использовании достижений современной селекции и развитии системы питомниководства промышленное виноградарство в агроклиматических зонах Беларуси способно обеспечить высокую прибыльность и конкурентоспособность соответствующей продукции, а значит, является одной из наиболее перспективных отраслей в общей структуре садоводства.

Список использованной литературы

- 1. Губин, Е. Н. Изменчивость и наследование признака раннеспелости винограда по комбинациям скрещивания / Е. Н. Губин // Виноделие и виноградарство. 2019. № 2. С. 42–43.
- 2. Кострикин, И. А. Размножение винограда и выращивание посадочного материала / И. А. Кострикин [и др.]. Ростов на Дону : Эверест, 2019. 69 с.
- 3. Лойко, Р. Э. Северный виноград / Р. Э. Лойко. Минск: Изд. дом МСП, 2014. 256 с.

ЗАРАЖЕННОСТЬ ЛИГУЛЕЗОМ КАРПОВЫХ РЫБ ВОДОХРАНИЛИЩА ЖИДЧЕ ПИНСКОГО РАЙОНА

Дорогокупец Ксения (УО МГПУ им. И. П. Шамякина, Беларусь) Научный руководитель – Е. А. Бодяковская, канд. вет наук, доцент

На территории Беларуси находится огромное количество рек и озер, в которых обитают 64 вида рыб. Основной проблемой рыбоводства являются болезни рыб, включая гельминтозные. Одним из распространенных гельминтозных заболеваний является лигулез, возбудитель которого — плероцеркоиды лентеца рода *Ligula* (семейство *Ligulidae*) [1].

Ремнецы паразитируют в брюшной полости рыб — вторых промежуточных хозяев. Так по мере роста паразитов зараженная рыба постепенно истощается и теряет способность к нормальному размножению, поскольку паразиты занимают значительную часть тела брюшной полости рыбы. Кроме того, ослабленная рыба становится легкой добычей для хищных видов рыб и рыбоядных птиц. Чаще всего вспышки заболевания лигулезом отмечаются в весенний и летний периоды года. Лигулез является неопасным для человека [2].

Цель работы – определение зараженности карповых в водохранилище Жидче Пинского района.

Отлов был произведен в июле 2023 г. в водохранилище Жидче Пинского района. Всего было отловлено 77 особей рыб пяти видов: плотва, окунь, верховодка, ёрш, пескарь. Обработку материала для установления диагноза проводили общепринятыми ихтиопаразитологическими методами [3]. Для оценки степени зараженности лигулезом рыб использовались стандартные показатели: экстенсивность инвазии (ЭИ) и интенсивность инвазии (ИИ).

Результаты исследования зараженности карповых рыб лигулезом в летний период 2023 года представлены в таблице 1.

Таблица 1 – Показатели зараженности карповых рыб лигулезом за лето 2023 года

	Количество	Количество	Количество	Степень зараженности	
Вид рыбы	исследованных	зараженных	паразитов,	ЭИ, %	ИИ
	рыб, экз.	рыб, экз.	ШТ.		(min-max)
Плотва	16	3	5	18,75	1–3
Окунь	14	0	0	-	-
Верховодка	15	0	0	-	-
Ёрш	16	0	0	-	-
Пескарь	16	0	0	-	-
Всего	77	3	5	3,9	1–3

Как видно из таблицы, исследовано от 14 до 16 рыб каждого вида, паразиты обнаружены в одном виде — плотве (всего заражено 3 особи, количество паразитов — пять). Экстенсивность инвазии для плотвы ровняется 18,75 %, для всех видов — 3,9 %. Интенсивность инвазии для плотвы колебалось в пределах от 1 до 3. По данным М. В. Новицкого [2] количество плероцеркоидов ремнецов обычно колеблется от 1 до 4 штук. Поэтому интенсивность инвазии для плотвы из водохранилища Жидче мы оцениваем, как среднюю.

Список использованной литературы

- 1. Никитеев, П. Распространение лигулеза в водоемах Ростовской области // П. Никитеев // Вет. с.-х. животных. -2016. -№ 12. C. 18–21.
- 2. Новицкий, М. В. Распространение лигулеза в Красноярском водохранилище Конькова А. В. / М. В. Новицкий // Экол. Юж. Сиб. и сопред. территорий. 2016. Ч. 1. N 20. С. 44—45.
- 3. Быховская-Павловская, И. Е. Паразитологическое исследование рыб / И. Е. Быховская-Павловская. Л. : Наука, 1985.-108 с.

ТЕХНОЛОГИЙ В ПРОЦЕСС ОБУЧЕНИЯ

Ермоленко Никита (УО ГГУ им. Франциска Скорины, Беларусь) Научный руководитель – С. М. Пантелеева, канд. хим. наук, доцент

В современном мире цифровые технологии проникают во все сферы жизни, и образование не является исключением. Использование компьютерных средств в обучении химии открывает новые возможности для учителей