and remaining ones
S%® = l(—l—x/Esin5—7T+\/§cos5—7r) st = l(\/§—\/§sin5—7T—«/§c035—”).
8 24 24" 8 24 24
So the Stokes tensor is given as
S®=-0.099, S*~0.576,
S% =-0.423, S* =0.099,
S$®=-0.092, S“=-0.031.
These examples prove correctness of the performed study.
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°
SPIN 1/2 PARTIC H ANOMALOUS MAGNETIC MOMENT
AND POLARI YIN THE EXTERNAL MAGNETIC FIELD

In the pres aper, we examine the Dirac-like equation for a spin 1/2 particle with two additional
characteristics,
field. After
coordinate’” To
this ach,

malousimagnetic moment p and polarizability ¢ in presence of external uniform magnetic

the variables, we derive the system of four differential equations in the polar
olve the system of equations, we apply the method by Fedorov — Gronskiy. According to
our polar components are expressed through only two different functions,
o the confluent hypergeometric equation; at this there arises a definite quantization rule due
nce of the uniform magnetic field. We have constructed two types of the wave functions,
théxcorresponding energy spectra are found in analytical form.
Keywords: Dirac-like equations, two additional, electromagnetic characteristics, external magnetic
fields, projective operators, exact solutions, generalized energy spectra.

In the paper [1], within the general method by Gel’fand — Yaglom [2], starting with the
extended set of representations of the Lorentz group, it was constructed a generalized equation
for a spin 1/2 particle with two additional characteristics (concerning general formalism see in
[3], [4]). After eliminating the accessory variables of the complete wave function, it was derived
the generalized Dirac-like equation, the last includes two additional interaction terms which are
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interpreted as related to anomalous magnetic moment and a second additional characteristics:

OFi(0, +ieA) + - M IR + 2M —2_7°i(0, +ieA) IR, — M¥¥ =0; (1)

the parameter £ corresponds to anomalous magnetic moment of a spin 1/2 particle, and the

second parameter o looks as related to a polarizability of the particle.
Let us consider this equation in presence of the uniform magnetic field. We will apply
the cylindrical coordinates and the tetrad formalism. Let the field be oriented along the axis z,

A, = +eBr? /2, F, = B. Then the above equation (1) takes on the form
2
U6, + 7@, +2i)+7—+(ia¢—e3r2/2+ij“)+ «bb
r’or
: eo . ey .
70,1+ 7 12Fp) + 0 PR, - MY =0, .§$ 2

We will apply the following substitution for the wave function %
fl(r)
Wy = ie—i(teim¢eikz fz(r) 1 e ideim %
r fs(r) r
f4(r)

Let us simplify the notations
eB=B, eF,=+B

d m+1/2+Br?/
am+1/2 :adl—

= U, eoc=o,

d m-1/2+Br? /2
dr r

the equation (2) leads to

Bo
—An2 f4(r)(w ') + fs

)k + )(1— T+ f(r)(—'B“ M) =0,

by Fo(F) (DK 'B“ e '“jl‘ M) =0,
IBO' _IB,u

(r) + f,(r)( oM M) =0,

. l(r)( —i)+ £, (N (e +K)(L+ 'ﬁ,l) £ (N B“jl‘ M)=0.

order o resolve thls system, we will apply the method by Fedorov — Gronskiy [5].
It is Rase the use of projective operators related to the third spin projection

1/2 0 0 0 1 000 0 00O
Y =ij = 0 -1/2 0 0 ; F):0 0 0O P:O 1 0 O
0 0 12 0 10010 "~ 0o0O0 0
0 0 0 -1/2 0 00O 0 001

according to this approach, each projective constituent is determined through one function:
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f, 0
f

v.0=| RO, v.0=| RO
0 f

4

We impose differential constraints that permit us to transform all equations into algebraic ones:
a,..F () =CH, b,,,R({r)=C,F,
taking into account these constraints we get the algebraic system

IB,u
C( O i), +(k+e)(1- e 1Bo s KM=
B . . IB,u < Yy
CZ(W i) fy+( k)(1+—M2)f4+( -M)f, = $
B0 ) _'B_u 2
C(2M Fi)E, 4 (e—k)(L Mz) A M), = &&

iBo IBy
C( —i) f,+ (e +k)(1+ Ve )f2+(+2|vI @ .

Without loss of generallty, we can equate two parameters, c ,’S0 obtaining

(@D s ~CR(N =0, (b, ,(r)=0; (3)
then the above algebraic system reads simpler
(IB'u+M)fl+0-f2+(k+e) _+i)f, =0,
0. f+('B” M) f, +C( +(e—k)(1+%)f4:0,
(4)

iBu

)f +Cl FE+ )T, =G+ M) E+0- 1, =0,

read
_ 2
LTI LS TR Y U I TS
r dr 4 2 r
2
J105 p tgee lp ggoce (M¥L2 e o
r dr 4 2 r

orm them to the variable, x=-Br?/2. These equations are related by simple
— —B, m=-m, F, = F,; 50 it suffices to solve the equation for F,(x)=x"e>f,(x):

2 —
fr (2A+1 +2D)f'+ A l(l/sz) -
X X
2
+D2f_£f+(2A+1)Df+£1+2m+2C /Bf=0.
X 4 X
Im-=1/2]

In order to have finite solutions, we should use A=+ ,D=+1/2 (let B>0). Inthis

way, in the variable y = —X we get a confluent hypergeometric equation with parameters
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[m-1/2|+m+1/2 C* 1

2 2B 2
The polynomial condition o = —n gives the following quantization rule

c=m-1/2]|+1, a=

C?=_2B(n+ m_1/2|2+m+1/2 +% . n=01,2,..
Let us turn to the algebraic system (4). It is convenient to apply dimensionless quantities
2 -
i:E, L:K’ E:C, b:B_, BGZ:'bg’ IB'uZ:|blu,
M M M 2M 2M 2M (b
then the system (4) in matrix form reads @
—(ibu+1) 0 (E+K)(1-ibo) —c(bo +1)
0 (ibu—1) c(bo —i) (E-K)1+ib

(E-K)(1-ibo) c(bo +i) —(ibu+1) 0

—c(bo —1) (E+K)(1+ibo) 0 (ibiisl)

From vanishing its determinant, we derive a bi-quadratic equatio
detA:b4[(E2—K2+C2)02—,u2T+(E2 %Z

+b? {2(!52 ~K2—c? +1) 2 +2[(E2 SK2 ) BT W 2};2 +8(E*- KZ)J,u}: 0.

For parameters E , >0, we obtain expressions °
1 2 2
E,=E, = m[iZb( +u). 1+b’c?) —(b*uo—1) +

+((—C2 + K2)64 +c72,uz)b4 +((— Cc +2K2)0'2 —40'/1—/12)b2 —c? +1+ K2,

The energy spectra depend i licated way on additional characteristics; by this reason
these spectra may be studi Ily. By physical reason, two additional parameters should
are imaginary; only then we Qet the physically interpretable positive energies.

Substituting expression for E,, i;the gystem (5) we can find two types of the wave functions.
rica
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GEOMETRICAL MODELLING ON THE MEDIA IN ELECTRO ICS

This paper includes the following items: Riemannian geometry and %heory; Maxwell
equations in Riemannian space and effective media; metrical tensor g, onstitutive relations;

s
%ﬂ, geometrical modeling of

edia, geometrical modeling.

inverse constitutive equations; geometric simulation of inhomoge
anisotropic uniform media; the moving medium and anisotropy:
Keywords: Maxwell equations, Riemannian space,

Introduction. Note that Gordon [1] the first interested in trying to describe
dielectric media by an effective metrics. Gordgn tried fb use a gravitational field to simulate
a dielectric medium. The idea was taken up and loped by Tamm and Mandel'stam [2]—[4],
and by many others. o

Let us start with the Maxwell eqtiations in Minkowski space for the uniform medium

divB =0, —ﬁ, ee,diVE = p, irOtB=J+EEO§. 1)
ot Hid ot
With the use of constituth@ ns H= E D=¢¢,E, egs. (1) can be written as
0
0, rotE=——0, divD=j°, rotﬂ=£+a—[z (x° =ct). (2
X cC Cc oX
We repres ric displacement D and the magnetic field H by the antisymmetric tensor
H*, and the magnetic induction B are accounted for by the tensor F™ :
-E' -E* -E° 0 -D* -D? -D?
( aﬂ)zEl 0 —cB® cB? (H"‘f”):Dl 0 -H%/c H?%Ic|
E? c¢B* 0 —cB D? H%/c 0 —HYdl
E® —cB* c¢B" O D® -H?/c H'lc 0

where E'=-E,D'=-D, B =+B, H' =+H,, j*=(p,J/c). Then egs. (2) may be presented in
relativistic covariant tensor form
0,F, +0,F, +0.,F, =0, g,H™=j" 3)

b" ca
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