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Introduction. Note that Gordon [1] the first interested in trying to describe
dielectric media by an effective metrics. Gordgn tried fb use a gravitational field to simulate
a dielectric medium. The idea was taken up and loped by Tamm and Mandel'stam [2]—[4],
and by many others. o

Let us start with the Maxwell eqtiations in Minkowski space for the uniform medium

divB =0, —ﬁ, ee,diVE = p, irOtB=J+EEO§. 1)
ot Hid ot
With the use of constituth@ ns H= E D=¢¢,E, egs. (1) can be written as
0
0, rotE=——0, divD=j°, rotﬂ=£+a—[z (x° =ct). (2
X cC Cc oX
We repres ric displacement D and the magnetic field H by the antisymmetric tensor
H*, and the magnetic induction B are accounted for by the tensor F™ :
-E' -E* -E° 0 -D* -D? -D?
( aﬂ)zEl 0 —cB® cB? (H"‘f”):Dl 0 -H%/c H?%Ic|
E? c¢B* 0 —cB D? H%/c 0 —HYdl
E® —cB* c¢B" O D® -H?/c H'lc 0

where E'=-E,D'=-D, B =+B, H' =+H,, j*=(p,J/c). Then egs. (2) may be presented in
relativistic covariant tensor form
0,F, +0,F, +0.,F, =0, g,H™=j" 3)

b" ca
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I . 1 .
For the vacuum case, the constitutive relations D =¢E, H=-—B, read in tensor form as follows
Hy

H*(x)=¢,F*(x), and egs. (3) contain only one tensor

0,k +0,F,+0,F, =0, abea=1ja.

b’ ca
S0
The situation is quite different in presence of media. Even for simplest case of the uniform

medium, relativizing the above constitutive equations D =egeE, H:i requires
HoH

a subsidiary (4 x4) -matrix with presumed properties of a 2-rank tensor: .ecb

1/k 0 0 O

m 0 -k 0 0 1 am n $
n =+e k = =67 b%

0 0 -k Of @’

0O 0 0 =k
A class of linear inhomogeneous electromagnetic media character|z®4 rank tensor may
be postulated as [3], [4]:
H®(X) =A™ (X)F,(x),  A™™(x) =
When extending Maxwell theory to a space-time
describes gravity according to General Relativity, one must change previous equations to
a more general form. In particular, the vacuu elbequations read

VB, +V,f +V f, Vb =j%, hy=gf

B

Aabnm X)

where Vﬂ stands for the covariant deridiativeNin. Srder to distinguish formulas referring to a flat

and curved models we will use small let
model, f, and h®.

to designates electromagnetic tensors in curved

[ J
1. Maxwell equations IR _Riemannian space and effective media. Let us discuss the
possibility to consider th@um Maxwell equations in a curved space-time as Maxwell
equations in flat spack-time but specified for an effective medium, the properties of which are

tructure of the initial curved model d,,(X). We will restrict ourselves

ordinates can be brought to the form [5], [6]
0,f,+0,f,+0.f, %ab,/—g fbazija. (4)
-9 %

Indeed, one can immediately see that introducing new variables

0200 T Fu ey-907 (08" (), () > H™,
equations (4) in the curved space can be re-written as Maxwell equations for the flat space but
in a medium:
o,k +0,F,+0.F, =0, o,H™ —lja.

€
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Relations playing the role of constitutive equations are determined by the metrical structure
of the geometrical model:

HY (x) = [ V=900 97 (08" () |, (x). (5)

2. Metrical tensor and constitutive relations. Let us consider the constitutive
equations for electromagnetic fields which are generated by the metrical structure of the space-
time model. For an arbitrary metrical tensor g,,(x) we may obtain a 3-dimensional form:

D' =" (NE +eca” (B, H'=ch  (WE +4 (1)  (x)B,.
Four dimensionless (3x3)-matrices €*(x), a™(x), B%(x), (u)*(x) ar
independent because they are bilinear functions of only 10 components of the sy ical

tensor g,,(x). $
After simple calculation, for these tensors one produces expressions £ E

() =y=-9(a” (0" () - g% (g™ (¥), (&™) (x)=%ﬁ S %

g"” (X)€4ic

(e )* (x) . Indeed, we have
(1) (0 =28 (09" (0,

making changes in mute indices, m <> j, n <5%, We t.
(1) () =26y 8" ()

In the same manner, one can verify the i

n@md " ()g”" (X)e = (™™ ().

i y ﬂki(x):+aik:
B =-9 X)QAQH(X) = giI(X)QOj(X)€j|k =+a".

So, the tensors obey the constr Y
" (x) = +¢ (U ) =+ D0, LU =a™;

they mean that the (6,x 6) -matrix defining constitutive equations is symmetrical
D'(X)| | (0 eca™(x) [[E()
H' ) | ecB"(¥)  #p (™) ()||B(X)
+1) -splitting in the metrical tensor

00

_ g (9")=9
(9)=79 (9")=9
tensors (), (&™), (B™) can be written in the form
€(0)=4-9[g" (09 () ~T()-TX)], a(x) == 9T (), A(X) =~~9 7" (X)g(x).
Metrical tensors which are the most interesting in the context of General relativity [5]
have a quasi-diagonal structure, then the effective constitutive relations simplify:

9 (x) ‘, (@) = g (X)ey = gl(x)euk’
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g 0 0 O
Y O 11 12 13
g ﬂ(x): O 921 322 323’ a(x)zo’ ﬂ(x)zo’
0 g3l g32 g33
€0 =-99% (0900, (W)(¥) ==2=9 Spl7, g ()7, ()] (6)
Explicit expressions for tensors ¢*(x) and (. *)*(x) given by (6) are
g11 g12 g13 Gll GlZ Gl3

(eik)zﬁgoogﬂ gzz 923, ((‘u—l)ik)zﬁGZl G2 st’ (b
g31 g32 g33 GSl G32 (333 $

where G* (x) stand for (algebraic) co-factors to the elements g'* (x):

(922 3 23 32) (g3l 23 21 33) (921 32 22431

Gik(x) (932 13 33 12) (933 1 31 13) (931 12 Zg
(ng 23 13 22) (913 21 glngS) (gll Z@Zl)
Therefore, two matrices, ¢(x) and . *(x), are not indep gbnd obey the following

constraint:

e(x)u(x) =

(gZZ 33 g ) ( g w ) (921 32 22 31)
(932 13 g ) (g 1 23l 13) (gSl 12 32 ll)

(glz 23 gl3 22) ( 11 23) (gll 22 12 21)
Thus, the metric tensors w»@sl-dlagonal structure effectively describe media with

following constitutive relatio e sign minus may be eliminated by changing the notation)
D= (NE, B=pu(X)H, wu(X)=—e(x),
g"(x) 9”(x) g"()
€)(X) =4-9()g"(X)[g* () 9*(x) g*(x)|.
g7 (x) 9¥() 9¥(x)
eometrical modeling of the inhomogeneous media. Let us consider a special form
of the, o al anisotropic metric

a 0 0 0
g o b 0 o0
“ 1o 0o - o

0 0 0 -b?
where a*, b* are arbitrary numerical parameters. The constitutive equations generated by this

geometry have the form D' =¢¢“E,, H'=y'u"*B,, where
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-b?* 0 0 b’b;> 0 0
()=a? 0 -b?> 0| (9= 0 b;%b;? 0 |,
0 0 -b? 0 0 b?b?

or differently

D1:_60E1 Dzz_eoEz D3:_60E3 H!= B, H2 = B, H3 = B, .
a’hy’ a’h; a’h; Hobosbs pobshl Hobrb;
These equations should be compared with the physical ones (b
Dlz—eoelEl, D2=—6062E2, D3:—5063E3, lei, szi, HS = B,
Hothy Holy 3
whence we obtain
1 %
6.]. = bl 2 2b2 !

1
= , bobZ, =h?
ol O M 1, =y, ﬂsq\v
One can readily obtain

AL B (@2pin?)=-g, -g=

S & &

&

€ =€n,

One can readily express b’ in terms of 2y :

In turn, from a’b’b’bZ = /e it follows

o 1
@Zeblbzbz_e\/_\/nnn ®

The formulas (7), (8 prow W|th anisotropic metrical tensor

0 0 0

\/a \ /n n,n,
0 —Jert |2 0 0
nl
p(X) =
0 0 ~Jent ”;”1 0
2

4. The moving medium and anisotropy. Starting point is that in Minkowski approach
to electrodynamics, the constitutive relations explicitly depend on the 4-velocity of the
reference frame motion under a medium. Gordon [2], Tamm and Mandel'stam [3], [4] noticed
that for a moving observer the constitutive relations can be expressed with the help of effective
metric as follows:

113



Hab(X):EOAabmnan, Aabmn :Goi[gam+(€,U—1)Uaum]i[gbn+(€,U—1)Ubun],
T T

where g?* = diag(+1, —1, —1, —1) . Corresponding constitutive 3-dimensional tensors are (let
us use the notation ez —1=y)

(—1+ yu'u' = yuu®) yu'u? yu'u®
€ =— yu'u® (=1+ yuPu® —yuu®) yuu’ :
yulu! yulu? (—1+ yulu® — yuu®)
. (1—yu’u® —yuu) yu'u® yu'u’ ‘b
(lufl)ik — = }/ulu2 (1—]/U3u3 —7/ulul) }/UZUS , @
yulu! yulu? (1—yu'u' — yu®u?
. 0 —u’u®  +pulu? . 0 +yulu’®
a==l+pu’u® 0 -, B¥==|-u% 0 %4.1%1 .
H —u’u®  +puut 0 H +yuu? 0

Further we deduce vector form for constitutive relations, ap tation

€ ey E—(VE}V ¢
1
= +——7

(10)

Relations (9), (10) provide us withyector form of constitutive relations for the uniform
medium moving with velocity V. We may conclude that the motion is effectively equivalent
to an anisotropic medium. BesideSythese relations mean that the Maxwell relations in media
depend explicitly on the v% e reference frame, therefore they are not invariant under

the Lorentz transformatio
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